2013年新课标全国卷I高种会考考试试题及答案数学(理)

2013-11-20 16:49:00   无忧考网     [ 手机版 ] [ 下载Word文档 ]
会考网权威发布《2013年新课标全国卷I高种会考考试试题及答案数学(理)》(全文共8080字),更多2013年新课标全国卷I高种会考考试试题及答案数学(理)相关文档资源请访问无忧考网高中会考频道。

这篇关于2013年新课标全国卷I高种会考考试试题及答案数学(理),是无忧考网特地为大家整理的,希望对大家有所帮助!

 

 

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷12页,第Ⅱ卷34页。全卷满分150分。考试时间120分钟。

 

注意事项:

1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷13页,第Ⅱ卷35页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷

一、            选择题共12小题。每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1、已知集合A={x|x2-2x>0},B={x|-<x<},则     (       )

A、A∩B=Æ            B、A∪B=R   C、B⊆A                         D、A⊆B

2、若复数z满足 (3-4i)z=|4+3i |,则z的虚部为                           (        )

A、-4                   (B)-                  (C)4              (D)

3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是  (        )

A、简单随机抽样             B、按性别分层抽样       C、按学段分层抽样       D、系统抽样

4、已知双曲线C:-=1(a>0,b>0)的离心率为,则C的渐近线方程为 (        )

A、yx               (B)yx                          (C)yx            (D)yx

5、执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于     (       )

A、[-3,4]                             

B、[-5,2]

C、[-4,3]

D、[-2,5]

开始

输入t

t<1

s=3t

s = 4tt2

输出s

结束

6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为   (    )

 

A、cm3              B、cm3             C、cm3           D、cm3

 

 

7、设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m= (    )

A、3              B、4                    C、5                D、6

 

8、某几何函数的三视图如图所示,则该几何的体积为(    )

A、18+8π                   B、8+8π

C、16+16π                  D、8+16π

 

侧视图

俯视图

4

4

4

2

2

2

4

2

主视图

9、设m为正整数,(xy)2m展开式的二项式系数的值为a,(xy)2m+1展开式的二项式系数的值为b,若13a=7b,则m=   (    )

 

A、5            B、6              C、7                  D、8

 

10、已知椭圆+=1(a>b>0)的右焦点为F(1,0),过点F的直线交椭圆于A、B两点。若AB的中点坐标为(1,-1),则E的方程为    (     )

A、+=1          B、+=1                  C、+=1                  D、+=1

11、已知函数f(x)=,若| f(x)|≥ax,则a的取值范围是(        )

A、(-∞,0]        B、(-∞,1]       C、[-2,1]       D、[-2,0]

 

12、设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Snn=1,2,3,…

b1c1b1c1=2a1an1anbn1=,cn1=,则(    )

A、{Sn}为递减数列           B、{Sn}为递增数列                  

C、{S2n1}为递增数列,{S2n}为递减数列               

D、{S2n1}为递减数列,{S2n}为递增数列     

本卷包括必考题和选考题两个部分。第(13)题-第(21)题为必考题,每个考生都必须作答。第(22)题-第(24)题为选考题,考生根据要求作答。

二.填空题:本大题共四小题,每小题5分。

13、已知两个单位向量ab的夹角为60°,c=ta+(1-t)b,若b·c=0,则t=_____.

14、若数列{an}的前n项和为Snan+,则数列{an}的通项公式是an=______.

15、设当x=θ时,函数f(x)=sinx-2cosx取得值,则cosθ=______

16、若函数f(x)=(1-x2)(x2axb)的图像关于直线x=-2对称,则f(x)的值是______.

.解答题:解答应写出文字说明,证明过程或演算步骤。

17、(本小题满分12分)

如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°

(1)若PB=,求PA;

(2)若∠APB=150°,求tan∠PBA

 

A

B

C

P

 

 

 

 

 

18、(本小题满分12分)

如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.

(Ⅰ)证明AB⊥A1C;

(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C所成角的正弦值。

A

B

C

C1

A1

B1

 

19、(本小题满分12分)

一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n。如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。

假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立

(1)求这批产品通过检验的概率;

(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望。

 

 

(20)(本小题满分12分)
已知圆M:(x+1)2y2=1,圆N:(x-1)2y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线 C

(Ⅰ)求C的方程;

(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.

 

 

(21)(本小题满分共12分)

已知函数f(x)=x2axbg(x)=ex(cxd),若曲线yf(x)和曲线yg(x)都过点P(0,2),且在点P处有相同的切线y=4x+2

(Ⅰ)求abcd的值

(Ⅱ)若x≥-2时,f(x)≤kgf(x),求k的取值范围。

 

请考生在第(22)、(23)、(24)三题中任选一题作答。注意:只能做所选定的题目。如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的 方框涂黑。

(22)(本小题满分10分)选修4—1:几何证明选讲   如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D。

                                              

(Ⅰ)证明:DB=DC;

   (Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径。

 

 

 

(23)(本小题10分)选修4—4:坐标系与参数方程  

已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ。

(Ⅰ)把C1的参数方程化为极坐标方程;

(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)

 

 

 

 (24)(本小题满分10分)选修4—5:不等式选讲

已知函数f(x)=|2x-1|+|2xa|,g(x)=x+3.

(Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;

(Ⅱ)设a>-1,且当x∈[-,)时,f(x)≤g(x),求a的取值范围.

相关推荐