2018年安徽省中小学新任教师公开招聘考试大纲【小学数学】

2018-05-31 09:44 来源:网络综合
教师招聘网免费发布2018年安徽省中小学新任教师公开招聘考试大纲【小学数学】,更多2018年安徽省中小学新任教师公开招聘考试大纲【小学数学】相关信息请访问教师招聘网。

【导语】《2018年安徽省中小学新任教师招聘公告》已发布,共招17158名。报名时间:6月6日8:00至6月11日18:00,无忧考网现将考试大纲发布如下:

  一、考试性质

  安徽省中小学新任教师公开招聘考试为全省统一组织的公开性选拔考试,是落实“省考、县管、校用”教师管理体制的基础工作。其目的是吸引有志于从事基础教育事业的优秀人才到中小学任教,进一步规范中小学新任教师公开招聘工作,把好教师“入口关”。考试采取笔试和面试相结合的方式进行。笔试结果将作为安徽省中小学新任教师公开招聘面试的依据,同时纳入考试总成绩。招聘考试从教师相应岗位的专业素质和教育教学能力等方面进行全面考核,择优录取。招聘考试应具有较高的信度、效度,必要的区分度和适当的难度。

  二、考试目标与要求

  根据《小学教师专业标准(试用)》的要求,本科目的考试,按照“考查基础知识、基本技能的同时,注重考查综合素质”的原则,确立以能力立意命题的指导思想,着重考查从事小学数学教学工作应具备的数学学科专业知识和基本能力,考查对小学数学学科的课程与教学论知识的理解与应用,考查教学技能。将知识、能力和素质融为一体,综合检测考生对于小学数学教学内容及相关知识的掌握程度、能力水平、从事小学数学教学工作的基本素质和发展潜能。

  三、考试范围与内容

  (一)学科专业知识

  1.数的认识

  ⑴整数、分数、小数和百分数的意义,数的改写和求近似数;数位和数级的顺序、名称及计数单位间的关系;比较分数、小数和百分数的大小。

  ⑵小数的性质、分数的基本性质,约分和通分;分数、小数和百分数之间的关系。

  ⑶有理数的意义、大小。

  ⑷平方根、算术平方根、立方根、无理数和实数的概念。

  2.数的运算与性质

  ⑴四则运算的意义、运算法则和运算定律;口算、笔算、估算的基本方法和相应算理。

  ⑵积的变化规律、商不变的性质和小数的性质。

  ⑶比和比例的各部分名称及相互关系;比、比例的意义和基本性质;正比例和反比例的意义,解决比例的有关问题。

  ⑷常见的数量关系。

  ⑸实数的加、减、乘、除、乘方及简单的混合运算。

  ⑹整除、约数、倍数的定义,用定义证明整除问题。

  ⑺带余除法的意义、带余除法表达式。

  ⑻奇数、偶数的定义和性质,奇偶分析法。

  ⑼被2,3,5整除的数的特征。

  ⑽因数(约数)、倍数、质数(素数)、合数、质因数、公因数(公约数)和最小公倍数以及互质数的概念;分解质因数;公因数、最小公倍数及其应用。

  3.常见的量

  ⑴常用的时间单位、长度单位、质量单位和面积单位以及体积与容积单位。

  ⑵用单位间的进率进行单位换算。

  4.代数式与方程

  ⑴用字母表示数的意义,列代数式,求代数式的值。

  ⑵整数指数幂的意义和基本性质;整式,整式的加法、减法和乘法运算。

  ⑶分式的概念、基本性质和运算。

  ⑷二次根式,二次根式的性质及其加、减、乘、除运算法则。

  ⑸等式的性质;方程、方程的解。

  ⑹一元一次方程、一元二次方程、二元一次方程(组)、分式方程的概念、解法及其应用,检验方程的解是否合理。

  5.不等式

  ⑴不等式的概念与基本性质,简单不等式的解法。

  ⑵一元一次不等式(组)及其简单应用。

  ⑶用比较法、综合法、分析法等证明简单的不等式。

  ⑷基本不等式:。

  6.集合

  ⑴集合,元素与集合间的关系,集合的表示方法。

  ⑵集合之间的包含和相等关系;全集与空集的含义。

  ⑶并集、交集和补集的含义、运算;用韦恩图表示简单集合间的关系与运算。

  ⑷区间及其表示方法。

  7.函数

  ⑴映射与函数的概念;求简单函数的定义域和值域;反函数,求简单函数的反函数。

  ⑵常量、变量;一次函数、正比例函数、反比例函数、二次函数的概念、性质和应用。

  ⑶函数的奇偶性、单调性和周期性;判断简单函数的奇偶性、周期性。

  ⑷复合函数的概念,将复合函数分解成几个简单函数。

  ⑸分数指数幂的概念、运算及性质;对数的概念和运算性质。

  ⑹初等函数的概念;幂函数、指数函数、对数函数的概念、图像和性质。

  ⑺角、弧度制、任意角的三角函数、三角函数线等概念,同角三角函数的基本关系,正弦、余弦的诱导公式;两角和与差以及二倍角的正弦、余弦和正切公式;正弦函数、余弦函数的图像和性质。

  ⑻正弦定理、余弦定理及其应用。

  8.数列

  ⑴数列的概念、表示法。

  ⑵等差数列,等差数列的通项公式与前n项和公式,用等差数列的有关知识解决简单问题。

  ⑶等比数列,等比数列的通项公式与前n项和公式,用等比数列的有关知识解决简单问题。

  9.极限

  ⑴数列极限、函数极限的定义。

  ⑵极限的四则运算和两个重要极限,求数列和函数的极限。

  ⑶函数连续的定义,求函数的连续区间和间断点。

  ⑷闭区间上连续函数的性质及其应用。

  10.导数

  ⑴导数的定义及其几何意义。

  ⑵基本求导公式,导数的四则运算法则。

  ⑶复合函数求导法则,隐函数及参数方程确定的函数求导法则。

  ⑷二阶导数的定义及求法。

  ⑸微分的定义;基本初等函数的微分公式与微分的运算法则。

  ⑹可导、可微与连续之间的关系。

  ⑺可导函数在某点取得极值的必要条件和充分条件;用导数讨论初等函数的单调性和极值,解决与最值有关的实际问题。

  11.积分

  ⑴不定积分的定义、性质与基本积分公式。

  ⑵定积分的定义与性质、几何意义;牛顿-莱布尼茨公式;求简单函数的定积分。

  ⑶定积分在几何与物理中的简单应用。

  ⑷用定积分求曲边梯形的面积、旋转体的体积的思想方法。

  12.向量代数

  ⑴空间直角坐标系,空间两点间的距离公式。

  ⑵向量的概念、几何表示、坐标表示,两个向量相等的含义。

  ⑶向量线性运算的性质及其几何意义。

  ⑷平面向量的基本定理及其意义。

  ⑸用坐标表示平面向量的加法、减法与数乘运算;用坐标表示平面向量共线的条件。

  ⑹两个向量的数量积的定义与几何意义;数量积的坐标表达式及运算。

  ⑺用数量积求两个向量的夹角,判断两个向量共线与垂直。

  ⑻用向量方法解决有关简单的问题。

  13.直线和圆的方程

  ⑴直线的倾斜角和斜率;过两点的直线的斜率公式;直线方程的几种形式(点斜式、两点式及一般式)。

  ⑵两条直线平行与垂直的条件,根据直线的方程判断两条直线的位置关系;求两条直线所成的角、点到直线的距离和两平行直线间的距离。

  ⑶圆的标准方程和一般方程。

  ⑷根据给定的方程,判断直线与圆、圆与圆的位置关系;用直线和圆的方程解决一些简单的问题。

  ⑸解析几何的基本思想,坐标法。

  14.圆锥曲线方程

  ⑴椭圆、双曲线及抛物线的定义、标准方程和简单几何性质。

  ⑵圆锥曲线的初步应用;数形结合的思想。

  15.直线、平面几何图形和简单几何体

  ⑴直线、射线、线段、角、距离、垂线、平行线、垂直、平行、相交等概念;平面的基本性质,斜二测画法和三视图;空间两直线、两平面、直线与平面的位置关系和表示法。

  ⑵长方形、正方形、平行四边形、三角形、梯形、圆;长方体、正方体、圆柱和圆锥;常见图形的周长、面积、体积、容积的求法。

  ⑶三角形及其内角、外角、中线、高线、角平分线,等腰三角形,直角三角形,三角形重心;全等三角形,全等三角形的判定;勾股定理及其逆定理。

  ⑷平行四边形、矩形、菱形、正方形以及它们之间的关系;平行四边形、矩形、菱形、正方形的性质定理、判定定理和三角形的中位线定理。

  ⑸圆及其相关概念(弧、弦、圆心角、圆周角、等圆、等弧、切线等);正多边形的概念;点与圆、直线与圆、圆与圆的位置关系。

  ⑹多面体、凸多面体、正多面体、棱柱、棱锥、球;棱柱、正棱锥、球的性质,画直棱柱、正棱锥的直观图;求柱体、锥体、球的体积;求正棱柱、正棱锥、球的表面积。

  ⑺轴对称、轴对称图形、中心对称、中心对称图形、图形旋转与平移的概念及其基本性质。

  ⑻线段的比、成比例线段、比例的基本性质;相似三角形的判定定理和性质定理及其应用;锐角三角函数;解直角三角形及其应用。

  ⑼平面直角坐标系;在同一直角坐标系中,图形变换前后点的坐标的变化规律。

  16.命题与证明、数学归纳法

  ⑴命题:简单命题及其逆命题、否命题与逆否命题,四种命题的相互关系。

  ⑵证明与推理,简单命题的证明方法。

  ⑶必要条件、充分条件与充要条件。

  ⑷数学归纳法及其应用。

  17.统计与概率

  ⑴统计表、象形统计图、条形统计图、折线统计图、扇形统计图、频数分布直方图和频率分布直方图;平均数、中位数、众数、数据离散程度、频数和频数分布的意义;求平均数、中位数、众数和方差。

  ⑵解释统计结果并根据结果作出简单的判断或预测。

  ⑶随机事件发生的不确定性和频率的稳定性,概率的意义以及频率与概率的区别。

  ⑷古典概型及其概率计算公式;用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

  ⑸互斥事件、相互独立事件,用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

  ⑹用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。

  ⑺用样本的频率分布去估计总体的频率分布,用样本的基本数字特征估计总体的基本数字特征;用样本估计总体的思想。

  (二)学科课程与教学论及其应用

  1.小学数学课程知识

  《义务教育数学课程标准(2011年版)》的相关内容,包括课程性质、课程基本理念、课程设计思路,课程目标、课程的主要内容和实施建议;《义务教育数学课程标准(2011年版)》所提出的“核心概念”的含义与教学价值。

  2.小学数学教学知识

  ⑴小学数学教学基本原则、教学过程、常用的数学教学模式与方法。

  ⑵确定小学数学教学目标的主要依据;根据提供的小学数学教材内容与不同年龄小学生的认知规律,分析课例的教学目标,教学重点、难点,明确所给教材内容在小学数学学科知识体系中的地位和作用,理解教材编排的意图等。

  ⑶根据提供的小学数学教学资源合理设计教案或教学片段。

  ⑷对提供的教案或教学片段进行分析、评价、改进等。

  四、考试形式和试卷结构

  1.考试形式:闭卷、笔试。

  2.考试时间150分钟,试卷分值120分。

  3.主要题型:选择题、填空题和解答题等。其中选择题是四选一型的单项题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算题、作图题、证明题、论述题、案例评析题和教学片段设计等。解答题应写出文字说明、演算步骤或推理过程;论述题、案例评析题等应明确表明观点、逻辑清晰、证据恰当、有理有据;教学片段设计应科学规范,利于教学有效实施。

  4.内容比例:数学学科知识约占70﹪(其中以小学数学教学内容为主),小学数学学科教学知识约占30﹪。